ECE 423: Optical Communications $4^{\text {th }}$ Year Communications
[1]

$$
\begin{aligned}
P_{C} & =-8 d B_{m} \quad \alpha=6 d B / \mathrm{km} \\
P_{0} & =P_{c}-\alpha L \quad[d B] \\
& =-8-6(2)=-20 d B_{m} \\
P_{0} & =10^{-20 / 10} \mathrm{~mW}=10^{-2} \mathrm{~mW}=10 \mu \mathrm{~W} .
\end{aligned}
$$

[2] The same equations in [1] $\rightarrow \mathrm{L}=3.67 \mathrm{Km}$

$$
\tau_{m}=D_{m} \times L \times \Delta \lambda_{o}
$$

$$
\begin{equation*}
=84.2(\mathrm{ps} / \mathrm{km} . \mathrm{nm}) \times 1(\mathrm{~km}) \times 20(\mathrm{~nm})=1700 \mathrm{ps} \tag{3}
\end{equation*}
$$

[4] It is given that $n_{1}=1.45$ and $\Delta=0.003$.

$$
\begin{aligned}
& \Delta=\frac{n_{1}-n_{2}}{n_{1}} \Rightarrow n_{2}=n_{1}(1-\Delta)=1.4456 \\
& V=\frac{2 \pi a}{\lambda} N A \quad \text { where } \quad N A=n_{1} \sqrt{2 \Delta}
\end{aligned}
$$

$$
\text { At } \lambda=1.3 \mu \mathrm{~m} \rightarrow \mathrm{~V}=2.2256
$$

$$
V \frac{d^{2}(V b)}{d V^{2}} \approx 0.08+0.549(2.834-V)^{2}
$$

$$
=0.2832
$$

$$
D_{w}(\lambda)=-\frac{n_{2} \Delta}{c \lambda} V \frac{d^{2}(V b)}{d V^{2}}
$$

$$
=\frac{-1.4456 \times 0.003}{\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(1.3 \mu \mathrm{~m})}(0.2832)
$$

$$
=-3.149 \mathrm{ps} /(\mathrm{nm} . \mathrm{km})
$$

$\frac{\Delta \tau}{L}=D_{c h} \Delta \lambda=8 \times 2=16 \mathrm{ps} . \mathrm{km}^{-1}$
$\therefore B L \approx \frac{0.5}{D_{c h} \Delta \lambda}=31.25 \mathrm{~Gb} . \mathrm{s}^{-1} \cdot \mathrm{~km}$
[6] Solve it by your self
$[7] \mathrm{P}_{\mathrm{T}}=100 \mathrm{mw}=10 \log \left(10^{-1} \mathrm{~W} / 1 \mathrm{~mW}\right)=-10 \mathrm{dBm}$
$\mathrm{R}_{\mathrm{S}}=1 \mathrm{mw}=10 \log \left(10^{-3} \mathrm{~W} / 1 \mathrm{~mW}\right)=-30 \mathrm{dBm}$
System gain $=\mathrm{P}_{\mathrm{T}}-\mathrm{R}_{\mathrm{S}}=-10-(-30)=20 \mathrm{~dB}$
Cable loss $=40 \mathrm{~km} \times 0.3=12 \mathrm{~dB}$
Total Losses $=12 \mathrm{~dB}+2 \mathrm{~dB}=14 \mathrm{~dB}$
System margin $=$ System gain - losses $=20-14=6 \mathrm{~dB}$
[8] Solve it by your self

Good Luck

Dr. Sherif Hekal

